Residual Life Prediction of Railway Axle: A Review

Residual Life Prediction of Railway Axle: A Review

Authors

  • Irwan Maulana Institut Teknologi Bandung
  • Leonardo Gunawan Institut Teknologi Bandung

DOI:

https://doi.org/10.37367/jpi.v7i2.295

Keywords:

Railway axle fatigue, Residual life prediction, Crack propagation

Abstract

Despite being designed to operate for over 30 years, railway axles often experience damage during their service life. Damage can occur as a result of environmental influences, impact from foreign objects, or inherent material imperfections. This paper provides an overview of common damages that frequently occur in railway axles and discusses the fatigue crack growth calculation models used to analyze their remaining life, as well as the parameters that influence fatigue failure in railway axles. Then studies related to fatigue life prediction that has been conducted by several researchers are reviewed. The studies showed that it is important to consider several data variabilities when performing the calculation to produce accurate and reliable results.

Keyword:   Railway axle fatigue, Residual life prediction, Crack propagation

 

Downloads

Download data is not yet available.

References

U. Zerbst et al., “Safe life and damage tolerance aspects of railway axles - A review,” Eng. Fract. Mech., vol. 98, no. 1, pp. 214–271, 2013, doi: 10.1016/j.engfracmech.2012.09.029.

Y. Murakami, “Effect of hardness HV on fatigue limits of materials containing defects, and fatigue limit prediction equations,” Met. Fatigue, pp. 61–94, 2019, doi: 10.1016/b978-0-12-813876-2.00005-4.

J. W. Gao, X. Dai, S. P. Zhu, J. W. Zhao, J. A. F. O. Correia, and Q. Wang, “Failure causes and hardening techniques of railway axles – A review from the perspective of structural integrity,” Eng. Fail. Anal., vol. 141, 2022, doi: 10.1016/j.engfailanal.2022.106656.

U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami, “Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches,” Eng. Fail. Anal., vol. 97, pp. 759–776, 2019, doi: 10.1016/j.engfailanal.2019.01.034.

J. F. Zheng, J. Luo, J. L. Mo, J. F. Peng, X. S. Jin, and M. H. Zhu, “Fretting wear behaviors of a railway axle steel,” Tribol. Int., vol. 43, no. 5–6, pp. 906–911, 2010, doi: 10.1016/j.triboint.2009.12.031.

E. Schmidová, P. Paščenko, B. Culek, and M. Schmid, “Premature failures of railway axles after repeated pressing,” Eng. Fail. Anal., vol. 123, no. January, 2021, doi: 10.1016/j.engfailanal.2021.105253.

D. Zeng, Y. Zhang, L. Lu, L. Zou, and S. Zhu, “Fretting wear and fatigue in press-fitted railway axle: A simulation study of the influence of stress relief groove,” Int. J. Fatigue, vol. 118, pp. 225–236, 2019, doi: 10.1016/j.ijfatigue.2018.09.008.

KNKT, “LAPORAN INVESTIGASI KECELAKAAN PERKERETAAPIAN,” 2016.

Z. Odanovic, M. Ristivojevic, and V. Milosevic-Mitic, “Investigation into the causes of fracture in railway freight car axle,” Eng. Fail. Anal., vol. 55, pp. 169–181, 2015, doi: 10.1016/j.engfailanal.2015.05.011.

K. Mädler, T. Geburtig, and D. Ullrich, “An experimental approach to determining the residual lifetimes of wheelset axles on a full-scale wheel-rail roller test rig,” Int. J. Fatigue, vol. 86, pp. 58–63, 2016, doi: 10.1016/j.ijfatigue.2015.06.016.

D. Ji, J. Zhang, K. Yi, Y. Huang, Q. Lu, and H. Zhang, “Surface crack growth simulation and residual life assessment of high-speed train axles based on extended finite element method,” Eng. Fail. Anal., vol. 134, 2022, doi: 10.1016/j.engfailanal.2022.106043.

C. M. Sonsino, “Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety,” Int. J. Fatigue, vol. 29, no. 12, pp. 2246–2258, 2007, doi: 10.1016/j.ijfatigue.2006.11.015.

U. Zerbst, M. Vormwald, R. Pippan, H. P. Gänser, C. Sarrazin-Baudoux, and M. Madia, “About the fatigue crack propagation threshold of metals as a design criterion - A review,” Eng. Fract. Mech., vol. 153, pp. 190–243, 2016, doi: 10.1016/j.engfracmech.2015.12.002.

S. Beretta, A. Ghidini, and F. Lombardo, “Fracture mechanics and scale effects in the fatigue of railway axles,” Eng. Fract. Mech., vol. 72, no. 2, pp. 195–208, 2005, doi: 10.1016/j.engfracmech.2003.12.011.

U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami, “Defects as a root cause of fatigue failure of metallic components. I: Basic aspects,” Eng. Fail. Anal., vol. 97, pp. 777–792, 2019, doi: 10.1016/j.engfailanal.2019.01.055.

M. D. Sangid, “The physics of fatigue crack initiation,” Int. J. Fatigue, vol. 57, pp. 58–72, 2013, doi: 10.1016/j.ijfatigue.2012.10.009.

B. Künkler, O. Düber, P. Köster, U. Krupp, C. P. Fritzen, and H. J. Christ, “Modelling of short crack propagation - Transition from stage I to stage II,” Eng. Fract. Mech., vol. 75, no. 3–4, pp. 715–725, 2008, doi: 10.1016/j.engfracmech.2007.02.018.

U. Krupp, O. Düber, H. J. Christ, B. Künkler, P. Köster, and C. P. Fritzen, “Propagation mechanisms of microstructurally short cracks-Factors governing the transition from short- to long-crack behavior,” Mater. Sci. Eng. A, vol. 462, no. 1–2, pp. 174–177, 2007, doi: 10.1016/j.msea.2006.03.159.

H. J. Christ, C. P. Fritzen, and P. Köster, “Micromechanical modeling of short fatigue cracks,” Curr. Opin. Solid State Mater. Sci., vol. 18, no. 4, pp. 205–211, 2014, doi: 10.1016/j.cossms.2014.05.001.

W. D. Musinski and D. L. McDowell, “Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains,” Acta Mater., vol. 112, pp. 20–39, 2016, doi: 10.1016/j.actamat.2016.04.006.

R. Pippan and A. Hohenwarter, “Fatigue crack closure: a review of the physical phenomena,” Fatigue Fract. Eng. Mater. Struct., vol. 40, no. 4, pp. 471–495, 2017, doi: 10.1111/ffe.12578.

E. Salvati, H. Zhang, K. S. Fong, X. Song, and A. M. Korsunsky, “Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload,” J. Mech. Phys. Solids, vol. 98, pp. 222–235, 2017, doi: 10.1016/j.jmps.2016.10.001.

A. K. Vasudevan and D. Kujawski, “Roughness induced crack Closure : A review of key points,” Theor. Appl. Fract. Mech., vol. 125, no. April, p. 103897, 2023, doi: 10.1016/j.tafmec.2023.103897.

N. Gates and A. Fatemi, “Friction and roughness induced closure effects on shear-mode crack growth and branching mechanisms,” Int. J. Fatigue, vol. 92, pp. 442–458, 2016, doi: 10.1016/j.ijfatigue.2016.01.023.

J. Maierhofer, D. Simunek, H. P. Gänser, and R. Pippan, “Oxide induced crack closure in the near threshold regime: The effect of oxide debris release,” Int. J. Fatigue, vol. 117, pp. 21–26, 2018, doi: 10.1016/j.ijfatigue.2018.07.021.

F. Paysan and E. Breitbarth, “Towards three dimensional aspects of plasticity-induced crack closure: A finite element simulation,” Int. J. Fatigue, vol. 163, 2022, doi: 10.1016/j.ijfatigue.2022.107092.

K. Solanki, S. R. Daniewicz, and J. C. Newman, “Finite element analysis of plasticity-induced fatigue crack closure: An overview,” Eng. Fract. Mech., vol. 71, no. 2, pp. 149–171, 2004, doi: 10.1016/S0013-7944(03)00099-7.

M. de Freitas, L. Reis, M. D. Fonte, and B. Li, “Effect of steady torsion on fatigue crack initiation and propagation under rotating bending: Multiaxial fatigue and mixed-mode cracking,” Eng. Fract. Mech., vol. 78, no. 5, pp. 826–835, 2011, doi: 10.1016/j.engfracmech.2009.12.012.

V. Giannella, “Stochastic approach to fatigue crack-growth simulation for a railway axle under input data variability,” Int. J. Fatigue, vol. 144, 2021, doi: 10.1016/j.ijfatigue.2020.106044.

M. Luke, I. Varfolomeev, K. Lütkepohl, and A. Esderts, “Fracture mechanics assessment of railway axles: Experimental characterization and computation,” Eng. Fail. Anal., vol. 17, no. 3, pp. 617–623, 2010, doi: 10.1016/j.engfailanal.2009.04.008.

J. Maierhofer, S. Kolitsch, R. Pippan, H. P. Gänser, M. Madia, and U. Zerbst, “The cyclic R-curve – Determination, problems, limitations and application,” Eng. Fract. Mech., vol. 198, pp. 45–64, 2018, doi: 10.1016/j.engfracmech.2017.09.032.

S. Cervello, “Fatigue properties of railway axles: New results of full-scale specimens from Euraxles project,” Int. J. Fatigue, vol. 86, pp. 2–12, 2016, doi: 10.1016/j.ijfatigue.2015.11.028.

U. Zerbst, M. Schödel, and H. T. Beier, “Parameters affecting the damage tolerance behaviour of railway axles,” Eng. Fract. Mech., vol. 78, no. 5, pp. 793–809, 2011, doi: 10.1016/j.engfracmech.2010.03.013.

M. Madia, S. Beretta, and U. Zerbst, “An investigation on the influence of rotary bending and press fitting on stress intensity factors and fatigue crack growth in railway axles,” Eng. Fract. Mech., vol. 75, no. 8, pp. 1906–1920, 2008, doi: 10.1016/j.engfracmech.2007.08.015.

H. Liang, R. Zhan, D. Wang, C. Deng, X. Xu, and B. Guo, “Effect of crack-tip deformation on fatigue crack growth: A comparative study under overload/underload conditions,” Theor. Appl. Fract. Mech., vol. 118, 2022, doi: 10.1016/j.tafmec.2022.103268.

S. C. Wu, Y. Luo, Z. Shen, L. C. Zhou, W. H. Zhang, and G. Z. Kang, “Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages,” Eng. Fract. Mech., vol. 225, 2020, doi: 10.1016/j.engfracmech.2019.106844.

S. M. Beden, S. Abdullah, and A. K. Ariffin, Review of fatigue crack propagation models for metallic components, vol. 28, no. 3. 2009.

U. Zerbst, K. Mädler, and H. Hintze, “Fracture mechanics in railway applications - An overview,” Eng. Fract. Mech., vol. 72, no. 2, pp. 163–194, 2005, doi: 10.1016/j.engfracmech.2003.11.010.

U. Zerbst, M. Vormwald, C. Andersch, K. Mädler, and M. Pfuff, “The development of a damage tolerance concept for railway components and its demonstration for a railway axle,” Eng. Fract. Mech., vol. 72, no. 2, pp. 209–239, 2005, doi: 10.1016/j.engfracmech.2003.11.011.

U. Zerbst, C. Klinger, and D. Klingbeil, “Structural assessment of railway axles - A critical review,” Eng. Fail. Anal., vol. 35, pp. 54–65, 2013, doi: 10.1016/j.engfailanal.2012.11.007.

M. Madia, S. Beretta, M. Schödel, U. Zerbst, M. Luke, and I. Varfolomeev, “Stress intensity factor solutions for cracks in railway axles,” Eng. Fract. Mech., vol. 78, no. 5, pp. 764–792, 2011, doi: 10.1016/j.engfracmech.2010.03.019.

P. Pokorný, T. Vojtek, L. Náhlík, and P. Hutař, “Crack closure in near-threshold fatigue crack propagation in railway axle steel EA4T,” Eng. Fract. Mech., vol. 185, pp. 2–19, 2017, doi: 10.1016/j.engfracmech.2017.02.013.

F. Hu, S. Wu, X. Xin, F. Guo, and Z. Ren, “Determination of the critical defect and fatigue life of high-speed railway axles under variable amplitude loads,” Int. J. Fatigue, vol. 168, 2023, doi: 10.1016/j.ijfatigue.2022.107446.

M. Rieger et al., “Fatigue crack growth in full-scale railway axles – Influence of secondary stresses and load sequence effects,” Int. J. Fatigue, vol. 132, 2020, doi: 10.1016/j.ijfatigue.2019.105360.

M. Yamamoto, K. Makino, and H. Ishiduka, “Comparison of crack growth behaviour between full-scale railway axle and scaled specimen,” Int. J. Fatigue, vol. 92, pp. 159–165, 2016, doi: 10.1016/j.ijfatigue.2016.07.001.

M. Luke, I. Varfolomeev, K. Lütkepohl, and A. Esderts, “Fatigue crack growth in railway axles: Assessment concept and validation tests,” Eng. Fract. Mech., vol. 78, no. 5, pp. 714–730, 2011, doi: 10.1016/j.engfracmech.2010.11.024.

H. Li, J. Zhang, S. Wu, H. Zhang, and Y. Fu, “Corrosion fatigue mechanism and life prediction of railway axle EA4T steel exposed to artificial rainwater,” Eng. Fail. Anal., vol. 138, 2022, doi: 10.1016/j.engfailanal.2022.106319.

V. Giannella, R. Sepe, A. Borrelli, G. De Michele, and E. Armentani, “Numerical investigation on the fracture failure of a railway axle,” Eng. Fail. Anal., vol. 129, 2021, doi: 10.1016/j.engfailanal.2021.105680.

Downloads

Published

2023-10-31

How to Cite

Maulana, I., & Gunawan, L. (2023). Residual Life Prediction of Railway Axle: A Review: Residual Life Prediction of Railway Axle: A Review. Jurnal Perkeretaapian Indonesia (Indonesian Railway Journal), 7(2), 78–90. https://doi.org/10.37367/jpi.v7i2.295

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.