The energy efficiency in urban electric railways

Overview of energy efficiency in urban electric railways

Authors

  • Maskuri Sobar Muhamad Fatoni Institut teknologi Bandung
  • Yunendar Aryo Handoko Institut Teknologi Bandung

DOI:

https://doi.org/10.37367/jpi.v8i1.296

Keywords:

railway, regenerative braking, train control, optimization, energy efficiency

Abstract

The world is moving towards zero CO2 production and limiting the global temperature increase to 1.5°C by 2050 by reducing the use of fossil fuels as an unsustainable energy source. As a transition from this reduction, electric energy has become the primary energy source in the industrial, transportation, construction, and other sectors. In the transportation sector, urban electric trains have become a preferred mode of transportation by people worldwide due to their high safety and service levels compared to other land transportation. However, electric trains require a significant amount of energy to operate, so efforts are needed to optimize total electricity usage. This paper provides a literature study related to electric energy efficiency in the field of urban electric trains, using train control methods and the utilization of regenerative braking systems as the most efficient energy recovery strategy.

Downloads

Download data is not yet available.

References

IEA, “Net Zero by 2050: A Roadmap for the Global Energy Sector,” Int. Energy Agency, p. 224, 2021, [Online]. Available: https://www.iea.org/reports/net-zero-by-2050

P. G. Howlett, I. P. Milroy, and P. J. Pudney, “Energy-efficient train control,” Control Eng. Pract., vol. 2, no. 2, pp. 193–200, 1994, doi: 10.1016/0967-0661(94)90198-8. DOI: https://doi.org/10.1016/0967-0661(94)90198-8

P. Howlett, “Optimal strategies for the control of a train,” Automatica, vol. 32, no. 4, pp. 519–532, 1996, doi: 10.1016/0005-1098(95)00184-0. DOI: https://doi.org/10.1016/0005-1098(95)00184-0

A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, “The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points,” Transp. Res. Part B Methodol., vol. 94, pp. 482–508, 2016, doi: 10.1016/j.trb.2015.07.023. DOI: https://doi.org/10.1016/j.trb.2015.07.023

A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, “The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques,” Transportation Research Part B: Methodological, vol. 94. pp. 509–538, 2016. doi: 10.1016/j.trb.2015.07.024. DOI: https://doi.org/10.1016/j.trb.2015.07.024

V. De Martinis and M. Gallo, “Models and Methods to Optimise Train Speed Profiles with and without Energy Recovery Systems: A Suburban Test Case,” Procedia - Social and Behavioral Sciences, vol. 87. pp. 222–233, 2013. doi: 10.1016/j.sbspro.2013.10.606. DOI: https://doi.org/10.1016/j.sbspro.2013.10.606

S. Yang, F. Liao, J. Wu, H. J. P. Timmermans, H. Sun, and Z. Gao, “A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system,” Transportation Research Part B: Methodological, vol. 133. pp. 85–113, 2020. doi: 10.1016/j.trb.2020.01.001.

A. Rupp, H. Baier, P. Mertiny, and M. Secanell, “Analysis of a flywheel energy storage system for light rail transit,” Energy, vol. 107, pp. 625–638, 2016, doi: 10.1016/j.energy.2016.04.051.

S. Ahmadi, A. Dastfan, and M. Assili, “Energy saving in metro systems: Simultaneous optimization of stationary energy storage systems and speed profiles,” Journal of Rail Transport Planning and Management, vol. 8, no. 1. pp. 78–90, 2018. doi: 10.1016/j.jrtpm.2018.03.003.

G. M. Scheepmaker, R. M. P. Goverde, and L. G. Kroon, “Review of energy-efficient train control and timetabling,” Eur. J. Oper. Res., vol. 257, no. 2, pp. 355–376, 2017, doi: 10.1016/j.ejor.2016.09.044. DOI: https://doi.org/10.1016/j.ejor.2016.09.044

S. S. Fazel, S. Firouzian, and B. K. Shandiz, “Energy-Efficient Emplacement of Reversible DC Traction Power Substations in Urban Rail Transport through Regenerative Energy Recovery,” Int. J. Railw. Res., vol. 1, no. July, pp. 11–22, 2014.

X. Yang, A. Chen, X. Li, B. Ning, and T. Tang, “An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems,” Transportation Research Part C: Emerging Technologies, vol. 57. pp. 13–29, 2015. doi: 10.1016/j.trc.2015.05.002. DOI: https://doi.org/10.1016/j.trc.2015.05.002

A. González-Gil, R. Palacin, and P. Batty, “Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy,” Energy Convers. Manag., vol. 75, pp. 374–388, 2013, doi: 10.1016/j.enconman.2013.06.039. DOI: https://doi.org/10.1016/j.enconman.2013.06.039

Kunihiko Ichikawa, “Application Of Optimization Theory for Bounded State Variable problems to the Operation of Train,” Chem. Pharm. Bull., no. 43, p. 2091, 1968, [Online]. Available: http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/

H. Strobel and P. Horn, “Energy Optimum on Board Microcomputer Control of Train Operation.,” IFAC Proc. Ser., vol. 17, no. 2, pp. 2889–2894, 1985, doi: 10.1016/s1474-6670(17)61421-6. DOI: https://doi.org/10.1016/S1474-6670(17)61421-6

M. I. . Ian Peter Milroy, M.A., ASPECTS OF AUTOMATIC TRAIN CONTROL. 1980.

I. M. Golovitcher, “Energy efficient control of rail vehicles,” Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 1, pp. 658–663, 2001, doi: 10.1109/icsmc.2001.969927. DOI: https://doi.org/10.1109/ICSMC.2001.969927

T. Albrecht and S. Oettich, “A new integrated approach to dynamic-schedule synchronization and energy-saving train control,” Comput. Railw. Viii, vol. 13, pp. 847–856, 2002.

R. Liu and I. M. Golovitcher, “Energy-efficient operation of rail vehicles,” Transp. Res. Part A Policy Pract., vol. 37, no. 10, pp. 917–932, 2003, doi: 10.1016/j.tra.2003.07.001. DOI: https://doi.org/10.1016/j.tra.2003.07.001

S. Aradi, T. Becsi, and P. Gaspar, “A predictive optimization method for energy-optimal speed profile generation for trains,” CINTI 2013 - 14th IEEE Int. Symp. Comput. Intell. Informatics, Proc., pp. 135–139, 2013, doi: 10.1109/CINTI.2013.6705179. DOI: https://doi.org/10.1109/CINTI.2013.6705179

T. Albrecht, A. Binder, and C. Gassel, “Applications of real-time speed control in rail-bound public transportation systems,” IET Intell. Transp. Syst., vol. 7, no. 3, pp. 305–314, 2013, doi: 10.1049/iet-its.2011.0187. DOI: https://doi.org/10.1049/iet-its.2011.0187

A. Trivella, P. Wang, and F. Corman, “The impact of wind on energy-efficient train control,” EURO J. Transp. Logist., vol. 10, no. January 2020, p. 100013, 2021, doi: 10.1016/j.ejtl.2020.100013. DOI: https://doi.org/10.1016/j.ejtl.2020.100013

I. A. Asnis, A. V. Dmitruk, and N. P. Osmolovskii, “Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle,” USSR Comput. Math. Math. Phys., vol. 25, no. 6, pp. 37–44, 1985, doi: 10.1016/0041-5553(85)90006-0. DOI: https://doi.org/10.1016/0041-5553(85)90006-0

R. Franke, P. Terwiesch, and M. Meyer, “trains,” pp. 23–27, 2000.

J. Qu, X. Feng, and Q. Wang, “Real-time trajectory planning for rail transit train considering regenerative energy,” 2014 17th IEEE Int. Conf. Intell. Transp. Syst. ITSC 2014, pp. 2738–2742, 2014, doi: 10.1109/ITSC.2014.6958128. DOI: https://doi.org/10.1109/ITSC.2014.6958128

X. Luan, Y. Wang, B. De Schutter, L. Meng, G. Lodewijks, and F. Corman, “Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations,” Transp. Res. Part B Methodol., vol. 115, pp. 72–94, 2018, doi: 10.1016/j.trb.2018.06.011. DOI: https://doi.org/10.1016/j.trb.2018.06.011

M. Peña-Alcaraz, A. Fernández, A. P. Cucala, A. Ramos, and R. R. Pecharromán, “Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 226, no. 4, pp. 397–408, 2012, doi: 10.1177/0954409711429411. DOI: https://doi.org/10.1177/0954409711429411

T. Albrecht, “Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control,” Chair ofTraffic Control Process Autom., vol. 34, pp. 1755–8336, 2004, doi: 10.2495/978-1-84564.

X. Li and X. Yang, “A Cooperative Scheduling Model for Timetable Optimization in Subway Systems,” Int. J. Uncertainty, Fuzziness Knowlege-Based Syst., vol. 21, no. SUPPL.1, pp. 1–15, 2013, doi: 10.1142/S0218488513400011. DOI: https://doi.org/10.1142/S0218488513400011

S. Das Gupta, J. K. Tobin, and L. Pavel, “A two-step linear programming model for energy-efficient timetables in metro railway networks,” Transp. Res. Part B Methodol., vol. 93, pp. 57–74, 2016, doi: 10.1016/j.trb.2016.07.003. DOI: https://doi.org/10.1016/j.trb.2016.07.003

X. Li and H. K. Lo, “An energy-efficient scheduling and speed control approach for metro rail operations,” Transportation Research Part B: Methodological, vol. 64. pp. 73–89, 2014. doi: 10.1016/j.trb.2014.03.006. DOI: https://doi.org/10.1016/j.trb.2014.03.006

S. Yang, F. Liao, J. Wu, H. J. P. Timmermans, H. Sun, and Z. Gao, “A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system,” Transportation Research Part B: Methodological, vol. 133. pp. 85–113, 2020. doi: 10.1016/j.trb.2020.01.001. DOI: https://doi.org/10.1016/j.trb.2020.01.001

N. Ghaviha, J. Campillo, M. Bohlin, and E. Dahlquist, “Review of Application of Energy Storage Devices in Railway Transportation,” Energy Procedia, vol. 105, pp. 4561–4568, 2017, doi: 10.1016/j.egypro.2017.03.980. DOI: https://doi.org/10.1016/j.egypro.2017.03.980

C. Sumpavakup, T. Ratniyomchai, and T. Kulworawanichpong, “Optimal energy saving in DC railway system with on-board energy storage system by using peak demand cutting strategy,” J. Mod. Transp., vol. 25, no. 4, pp. 223–235, 2017, doi: 10.1007/s40534-017-0146-6. DOI: https://doi.org/10.1007/s40534-017-0146-6

A. Frilli, E. Meli, D. Nocciolini, L. Pugi, and A. Rindi, “Energetic optimization of regenerative braking for high speed railway systems,” Energy Convers. Manag., vol. 129, pp. 200–215, 2016, doi: 10.1016/j.enconman.2016.10.011. DOI: https://doi.org/10.1016/j.enconman.2016.10.011

A. Rupp, H. Baier, P. Mertiny, and M. Secanell, “Analysis of a flywheel energy storage system for light rail transit,” Energy, vol. 107, pp. 625–638, 2016, doi: 10.1016/j.energy.2016.04.051. DOI: https://doi.org/10.1016/j.energy.2016.04.051

S. De La Torre, A. J. Sánchez-Racero, J. A. Aguado, M. Reyes, and O. Martínez, “Optimal Sizing of Energy Storage for Regenerative Braking in Electric Railway Systems,” IEEE Trans. Power Syst., vol. 30, no. 3, pp. 1492–1500, 2015, doi: 10.1109/TPWRS.2014.2340911. DOI: https://doi.org/10.1109/TPWRS.2014.2340911

H. H. Alnuman, D. T. Gladwin, M. P. Foster, and E. M. Ahmed, “Enhancing energy management of a stationary energy storage system in a DC electric railway using fuzzy logic control,” Int. J. Electr. Power Energy Syst., vol. 142, no. PB, p. 108345, 2022, doi: 10.1016/j.ijepes.2022.108345. DOI: https://doi.org/10.1016/j.ijepes.2022.108345

R. Barrero, X. Tackoen, and J. Van Mierlo, “Improving energy efficiency in public transport: Stationary supercapacitor based energy storage systems for a metro network,” 2008 IEEE Veh. Power Propuls. Conf. VPPC 2008, 2008, doi: 10.1109/VPPC.2008.4677491. DOI: https://doi.org/10.1109/VPPC.2008.4677491

A. M. Gee and R. W. Dunn, “Analysis of Trackside Flywheel Energy Storage in Light Rail Systems,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 3858–3869, 2015, doi: 10.1109/TVT.2014.2361865. DOI: https://doi.org/10.1109/TVT.2014.2361865

S. Ahmadi, A. Dastfan, and M. Assili, “Energy saving in metro systems: Simultaneous optimization of stationary energy storage systems and speed profiles,” J. Rail Transp. Plan. Manag., vol. 8, no. 1, pp. 78–90, 2018, doi: 10.1016/j.jrtpm.2018.03.003. DOI: https://doi.org/10.1016/j.jrtpm.2018.03.003

D. Cornic, “Efficient recovery of braking energy through a reversible dc substation,” Int. Conf. Electr. Syst. Aircraft, Railw. Sh. Propulsion, ESARS 2010, 2010, doi: 10.1109/ESARS.2010.5665264. DOI: https://doi.org/10.3850/978-981-08-6396-8_P078

H. Ibaiondo and A. Romo, “Kinetic energy recovery on railway systems with feedback to the grid,” Proc. EPE-PEMC 2010 - 14th Int. Power Electron. Motion Control Conf., pp. 94–97, 2010, doi: 10.1109/EPEPEMC.2010.5606545. DOI: https://doi.org/10.1109/EPEPEMC.2010.5606545

D. Roch-Dupré, A. P. Cucala, R. R. Pecharromán, Á. J. López-López, and A. Fernández-Cardador, “Evaluation of the impact that the traffic model used in railway electrical simulation has on the assessment of the installation of a Reversible Substation,” Int. J. Electr. Power Energy Syst., vol. 102, no. October 2017, pp. 201–210, 2018, doi: 10.1016/j.ijepes.2018.04.030. DOI: https://doi.org/10.1016/j.ijepes.2018.04.030

K. Almaksour et al., “Mutual impact of train regenerative braking and inverter based reversible DC railway substation,” 2019 21st Eur. Conf. Power Electron. Appl. EPE 2019 ECCE Eur., 2019, doi: 10.23919/EPE.2019.8915517. DOI: https://doi.org/10.23919/EPE.2019.8915517

F. Cascetta et al., “Impact of a reversible substation on energy recovery experienced on-board a train,” Meas. J. Int. Meas. Confed., vol. 183, no. February, 2021, doi: 10.1016/j.measurement.2021.109793. DOI: https://doi.org/10.1016/j.measurement.2021.109793

Downloads

Published

2024-03-31

How to Cite

Fatoni, M. S. M., & Handoko, Y. A. (2024). The energy efficiency in urban electric railways: Overview of energy efficiency in urban electric railways. Jurnal Perkeretaapian Indonesia (Indonesian Railway Journal), 8(1), 8–20. https://doi.org/10.37367/jpi.v8i1.296

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.