Artificial Intelligence in Regenerative Braking for Trains: A Systematic Review


  • Duli Ridlo Istriantono Sumaryoto Institut Teknologi Bandung
  • Yunendar Aryo Handoko Institut Teknologi Bandung



Artificial Intelligence, Regenerative Braking, Railway


The impact of Artificial Intelligence (AI) on different sectors, including railways, is now widely recognized. This paper shares the findings of a comprehensive literature review on how AI affects regenerative braking in railway transportation. The review focuses on various areas of regenerative braking, such as energy storage system, timetabling, and reversible substation.

In the literature review, it was found that 57 scientific papers were published from 2017 to December 2022. The majority of these papers, specifically 70.2%, utilized AI to optimize the effectiveness of regenerative braking. However, the use of AI in reversible substation and a combination of methods for regenerative braking is still limited, even though several methods exist. With the continuous development of new AI innovations, it is anticipated that new strategies will be created to enhance energy efficiency in regenerative braking, particularly in rail transportation.

Keywords: Artificial Intelligence, Regenerative Braking, Railway.


Download data is not yet available.


International Energy Agency, “Net Zero by 2050: A Roadmap for the Global Energy Sector,” Int. Energy Agency, p. 224, 2021, [Online]. Available:

International Railways Union, “Technologies and Potential Developments for Energy Efficiency and CO2 Reductions in Rail Systems,” p. 188, 2016, [Online]. Available:

R. Tang et al., “A literature review of Artificial Intelligence applications in railway systems,” Transp. Res. Part C Emerg. Technol., vol. 140, no. April, 2022, doi: 10.1016/j.trc.2022.103679. DOI:

W. Li, Q. Peng, C. Wen, and X. Xu, “Comprehensive Optimization of a Metro Timetable Considering Passenger Waiting Time and Energy Efficiency,” IEEE Access, vol. 7, pp. 160144–160167, 2019, doi: 10.1109/ACCESS.2019.2950814. DOI:

H. Liu, J. Xun, J. Cai, Y. Liu, and X. Wen, “An Approach to Improving Regenerative Energy by Using Swarm Intelligence for Urban Rail Transit,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, vol. 2022-Octob, pp. 499–504, 2022, doi: 10.1109/ITSC55140.2022.9921871. DOI:

J. Liao, G. Wu, H. Chen, S. Ni, T. Lin, and L. Tang, “ACDRL: An actor–critic deep reinforcement learning approach for solving the energy-aimed train timetable rescheduling problem under random disturbances,” Energy Reports, vol. 8, pp. 1350–1357, 2022, doi: 10.1016/j.egyr.2022.08.259. DOI:

N. Besinovic et al., “Artificial Intelligence in Railway Transport: Taxonomy, Regulations and Applications,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 14011–14024, 2021, doi: 10.1109/TITS.2021.3131637. DOI:

Barbara Kitchenham, “Procedures for Performing Systematic Reviews,” Keele Univ. Tech. Rep., vol. 33, no. 2004, pp. 1–26, 2014.

P. Liu et al., “A robust and energy-efficient train timetable for the subway system,” Transp. Res. Part C Emerg. Technol., vol. 121, p. 102822, Dec. 2020, doi: 10.1016/j.trc.2020.102822. DOI:

B. Bu, G. Qin, L. Li, and G. Li, “An Energy Efficient Train Dispatch and Control Integrated Method in Urban Rail Transit,” Energies, vol. 11, no. 5, p. 1248, May 2018, doi: 10.3390/en11051248. DOI:

X. Yang, A. Chen, J. Wu, Z. Gao, and T. Tang, “An energy-efficient rescheduling approach under delay perturbations for metro systems,” Transp. B Transp. Dyn., vol. 7, no. 1, pp. 386–400, Dec. 2019, doi: 10.1080/21680566.2017.1421109. DOI:

S. Su, X. Wang, Y. Cao, and J. Yin, “An Energy-Efficient Train Operation Approach by Integrating the Metro Timetabling and Eco-Driving,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 10, pp. 4252–4268, Oct. 2020, doi: 10.1109/TITS.2019.2939358. DOI:

Y. Huang et al., “An integrated approach for the energy-efficient driving strategy optimization of multiple trains by considering regenerative braking,” Comput. Ind. Eng., vol. 126, pp. 399–409, Dec. 2018, doi: 10.1016/j.cie.2018.09.041. DOI:

D. He et al., “An integrated optimization model of metro energy consumption based on regenerative energy and passenger transfer,” Appl. Energy, vol. 264, p. 114770, Apr. 2020, doi: 10.1016/j.apenergy.2020.114770. DOI:

Y. Bai, Y. Cao, Z. Yu, T. K. Ho, C. Roberts, and B. Mao, “Cooperative Control of Metro Trains to Minimize Net Energy Consumption,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 5, pp. 2063–2077, May 2020, doi: 10.1109/TITS.2019.2912038. DOI:

J. Yin, L. Yang, T. Tang, Z. Gao, and B. Ran, “Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches,” Transp. Res. Part B Methodol., vol. 97, pp. 182–213, Mar. 2017, doi: 10.1016/j.trb.2017.01.001. DOI:

J. Liao, F. Zhang, S. Zhang, G. Yang, and C. Gong, “Energy-saving optimization strategy of multi-train metro timetable based on dual decision variables: A case study of Shanghai Metro line one,” J. Rail Transp. Plan. Manag., vol. 17, p. 100234, Mar. 2021, doi: 10.1016/j.jrtpm.2021.100234. DOI:

H. Wang, X. Yang, J. Wu, H. Sun, and Z. Gao, “Metro timetable optimisation for minimising carbon emission and passenger time: a bi‐objective integer programming approach,” IET Intell. Transp. Syst., vol. 12, no. 7, pp. 673–681, Sep. 2018, doi: 10.1049/iet-its.2017.0156. DOI:

H. Krueger and A. Cruden, “Multi-Layer Event-Based Vehicle-to-Grid (V2G) Scheduling With Short Term Predictive Capability Within a Modular Aggregator Control Structure,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 4727–4739, May 2020, doi: 10.1109/TVT.2020.2976035. DOI:

Urbaniak, Kardas-Cinal, and Jacyna, “Optimization of Energetic Train Cooperation,” Symmetry (Basel)., vol. 11, no. 9, p. 1175, Sep. 2019, doi: 10.3390/sym11091175. DOI:

J. Liu and N. Zhao, “Research on Energy-Saving Operation Strategy for Multiple Trains on the Urban Subway Line,” Energies, vol. 10, no. 12, p. 2156, Dec. 2017, doi: 10.3390/en10122156. DOI:

D. He, G. Lu, and Y. Yang, “Research on Optimization of Train Energy-Saving Based on Improved Chicken Swarm Optimization,” IEEE Access, vol. 7, pp. 121675–121684, 2019, doi: 10.1109/ACCESS.2019.2937656. DOI:

Z. Tian, P. Weston, N. Zhao, S. Hillmansen, C. Roberts, and L. Chen, “System energy optimisation strategies for metros with regeneration,” Transp. Res. Part C Emerg. Technol., vol. 75, pp. 120–135, Feb. 2017, doi: 10.1016/j.trc.2016.12.004. DOI:

H. Liu, M. Zhou, X. Guo, Z. Zhang, B. Ning, and T. Tang, “Timetable Optimization for Regenerative Energy Utilization in Subway Systems,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 9, pp. 3247–3257, Sep. 2019, doi: 10.1109/TITS.2018.2873145. DOI:

J. Xun, T. Liu, B. Ning, and Y. Liu, “Using Approximate Dynamic Programming to Maximize Regenerative Energy Utilization for Metro,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3650–3662, Sep. 2020, doi: 10.1109/TITS.2019.2930766. DOI:

W. Kampeerawat and T. Koseki, “A strategy for utilization of regenerative energy in urban railway system by application of smart train scheduling and wayside energy storage system,” Energy Procedia, vol. 138, pp. 795–800, Oct. 2017, doi: 10.1016/j.egypro.2017.10.070. DOI:

P. Liu, L. Yang, Z. Gao, Y. Huang, S. Li, and Y. Gao, “Energy-Efficient Train Timetable Optimization in the Subway System with Energy Storage Devices,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 12, pp. 3947–3963, Dec. 2018, doi: 10.1109/TITS.2018.2789910. DOI:

Z. Yang, Z. Yang, H. Xia, F. Lin, and F. Zhu, “Supercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit,” Energies, vol. 10, no. 4, p. 520, Apr. 2017, doi: 10.3390/en10040520. DOI:

F. Zhu, Z. Yang, H. Xia, and F. Lin, “Hierarchical Control and Full-Range Dynamic Performance Optimization of the Supercapacitor Energy Storage System in Urban Railway,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6646–6656, Aug. 2018, doi: 10.1109/TIE.2017.2772174. DOI:

I. Sengor, H. C. Kilickiran, H. Akdemir, B. Kekezoglu, O. Erdinc, and J. P. S. Catalao, “Energy Management of a Smart Railway Station Considering Regenerative Braking and Stochastic Behaviour of ESS and PV Generation,” IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1041–1050, Jul. 2018, doi: 10.1109/TSTE.2017.2759105. DOI:

P. Luo et al., “Multi-Application Strategy Based on Railway Static Power Conditioner With Energy Storage System,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4, pp. 2140–2152, Apr. 2021, doi: 10.1109/TITS.2020.3048362. DOI:

S. Park and S. R. Salkuti, “Optimal Energy Management of Railroad Electrical Systems with Renewable Energy and Energy Storage Systems,” Sustainability, vol. 11, no. 22, p. 6293, Nov. 2019, doi: 10.3390/su11226293. DOI:

W. Jefimowski, A. Szeląg, M. Steczek, and A. Nikitenko, “Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study,” Energy, vol. 195, p. 116943, Mar. 2020, doi: 10.1016/ DOI:

Y. Liu, M. Chen, S. Lu, Y. Chen, and Q. Li, “Optimized Sizing and Scheduling of Hybrid Energy Storage Systems for High-Speed Railway Traction Substations,” Energies, vol. 11, no. 9, p. 2199, Aug. 2018, doi: 10.3390/en11092199. DOI:

R. Lamedica, A. Ruvio, L. Palagi, and N. Mortelliti, “Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line,” Energies, vol. 13, no. 23, p. 6271, Nov. 2020, doi: 10.3390/en13236271. DOI:

S. Ahmadi, A. Dastfan, and M. Assili, “Energy saving in metro systems: Simultaneous optimization of stationary energy storage systems and speed profiles,” J. Rail Transp. Plan. Manag., vol. 8, no. 1, pp. 78–90, Jun. 2018, doi: 10.1016/j.jrtpm.2018.03.003. DOI:

C. Sumpavakup, T. Ratniyomchai, and T. Kulworawanichpong, “Optimal energy saving in DC railway system with on-board energy storage system by using peak demand cutting strategy,” J. Mod. Transp., vol. 25, no. 4, pp. 223–235, Dec. 2017, doi: 10.1007/s40534-017-0146-6. DOI:

F. Zhu, Z. Yang, F. Lin, and Y. Xin, “Decentralized Cooperative Control of Multiple Energy Storage Systems in Urban Railway Based on Multiagent Deep Reinforcement Learning,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9368–9379, Sep. 2020, doi: 10.1109/TPEL.2020.2971637. DOI:

J. A. Aguado, A. J. Sanchez Racero, and S. de la Torre, “Optimal Operation of Electric Railways With Renewable Energy and Electric Storage Systems,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 993–1001, Mar. 2018, doi: 10.1109/TSG.2016.2574200. DOI:

Z. Gao, Q. Lu, C. Wang, J. Fu, and B. He, “Energy-Storage-Based Smart Electrical Infrastructure and Regenerative Braking Energy Management in AC-Fed Railways with Neutral Zones,” Energies, vol. 12, no. 21, p. 4053, Oct. 2019, doi: 10.3390/en12214053. DOI:

P. Fragiacomo and P. Francesco, “Energy performance of a Fuel Cell hybrid system for rail vehicle propulsion,” Energy Procedia, vol. 126, pp. 1051–1058, Sep. 2017, doi: 10.1016/j.egypro.2017.08.312. DOI:

C. F. Calvillo, A. Sánchez-Miralles, J. Villar, and F. Martín, “Impact of EV penetration in the interconnected urban environment of a smart city,” Energy, vol. 141, pp. 2218–2233, Dec. 2017, doi: 10.1016/ DOI:

Z. Yang, Z. Yang, H. Xia, and F. Lin, “Brake Voltage Following Control of Supercapacitor-Based Energy Storage Systems in Metro Considering Train Operation State,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6751–6761, Aug. 2018, doi: 10.1109/TIE.2018.2793184. DOI:

S. Mayrink, J. G. Oliveira, B. H. Dias, L. W. Oliveira, J. S. Ochoa, and G. S. Rosseti, “Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation,” Energies, vol. 13, no. 4, p. 963, Feb. 2020, doi: 10.3390/en13040963. DOI:

G. Cipolletta, A. Delle Femine, D. Gallo, M. Luiso, and C. Landi, “Design of a Stationary Energy Recovery System in Rail Transport,” Energies, vol. 14, no. 9, p. 2560, Apr. 2021, doi: 10.3390/en14092560. DOI:

Z. Zhong, Z. Yang, X. Fang, F. Lin, and Z. Tian, “Hierarchical Optimization of an On-Board Supercapacitor Energy Storage System Considering Train Electric Braking Characteristics and System Loss,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 2576–2587, Mar. 2020, doi: 10.1109/TVT.2020.2967467. DOI:

G. Cui et al., “Supercapacitor Integrated Railway Static Power Conditioner for Regenerative Braking Energy Recycling and Power Quality Improvement of High-Speed Railway System,” IEEE Trans. Transp. Electrif., vol. 5, no. 3, pp. 702–714, Sep. 2019, doi: 10.1109/TTE.2019.2936686. DOI:

T. S. Titova, A. M. Evstaf’ev, and V. V. Nikitin, “The Use of Energy Storages to Increase the Energy Effectiveness of Traction Rolling Stock,” Russ. Electr. Eng., vol. 89, no. 10, pp. 576–580, Oct. 2018, doi: 10.3103/S1068371218100097. DOI:

X. Huang, Q. Liao, Q. Li, S. Tang, and K. Sun, “Power management in co-phase traction power supply system with super capacitor energy storage for electrified railways,” Railw. Eng. Sci., vol. 28, no. 1, pp. 85–96, Mar. 2020, doi: 10.1007/s40534-020-00206-x. DOI:

M. Chen, Y. Cheng, Z. Cheng, D. Zhang, Y. Lv, and R. Liu, “Energy storage traction power supply system and control strategy for an electrified railway,” IET Gener. Transm. Distrib., vol. 14, no. 12, pp. 2304–2314, Jun. 2020, doi: 10.1049/iet-gtd.2019.1540. DOI:

H. Liu, Y. Jiang, and S. Li, “Design and downhill speed control of an electric-hydrostatic hydraulic hybrid powertrain in battery-powered rail vehicles,” Energy, vol. 187, p. 115957, Nov. 2019, doi: 10.1016/ DOI:

M. Ceraolo, G. Lutzemberger, E. Meli, L. Pugi, A. Rindi, and G. Pancari, “Energy storage systems to exploit regenerative braking in DC railway systems: Different approaches to improve efficiency of modern high-speed trains,” J. Energy Storage, vol. 16, pp. 269–279, Apr. 2018, doi: 10.1016/j.est.2018.01.017. DOI:

O. S. Valinsky, A. M. Evstaf’ev, and V. V. Nikitin, “The Effectiveness of Energy Exchange Processes in Traction Electric Drives with Onboard Capacitive Energy Storages,” Russ. Electr. Eng., vol. 89, no. 10, pp. 566–570, Oct. 2018, doi: 10.3103/S1068371218100103. DOI:

L. Alfieri, L. Battistelli, and M. Pagano, “Impact on railway infrastructure of wayside energy storage systems for regenerative braking management: a case study on a real Italian railway infrastructure,” IET Electr. Syst. Transp., vol. 9, no. 3, pp. 140–149, Sep. 2019, doi: 10.1049/iet-est.2019.0005. DOI:

J. Chen, H. Hu, Y. Ge, K. Wang, W. Huang, and Z. He, “An Energy Storage System for Recycling Regenerative Braking Energy in High-Speed Railway,” IEEE Trans. Power Deliv., vol. 36, no. 1, pp. 320–330, Feb. 2021, doi: 10.1109/TPWRD.2020.2980018. DOI:

A. García-Garre and A. Gabaldón, “Analysis, Evaluation and Simulation of Railway Diesel-Electric and Hybrid Units as Distributed Energy Resources,” Appl. Sci., vol. 9, no. 17, p. 3605, Sep. 2019, doi: 10.3390/app9173605. DOI:

M. Saleh, O. Dutta, Y. Esa, and A. Mohamed, “Quantitative analysis of regenerative energy in electric rail traction systems,” in 2017 IEEE Industry Applications Society Annual Meeting, Oct. 2017, pp. 1–7. doi: 10.1109/IAS.2017.8101774. DOI:

G. Zhang, Z. Tian, P. Tricoli, S. Hillmansen, Y. Wang, and Z. Liu, “Inverter Operating Characteristics Optimization for DC Traction Power Supply Systems,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3400–3410, Apr. 2019, doi: 10.1109/TVT.2019.2899165. DOI:

X. Ge, J. Pu, B. Gou, and Y.-C. Liu, “An Open-Circuit Fault Diagnosis Approach for Single-Phase Three-Level Neutral-Point-Clamped Converters,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2559–2570, Mar. 2018, doi: 10.1109/TPEL.2017.2691804. DOI:

H. J. Kaleybar, H. M. Kojabadi, M. Brenna, F. Foiadelli, and D. Zaninelli, “An intelligent strategy for regenerative braking energy harvesting in AC electrical railway substation,” in 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Jun. 2017, pp. 391–396. doi: 10.1109/MTITS.2017.8005703. DOI:

F. Hao, G. Zhang, J. Chen, Z. Liu, D. Xu, and Y. Wang, “Optimal Voltage Regulation and Power Sharing in Traction Power Systems With Reversible Converters,” IEEE Trans. Power Syst., vol. 35, no. 4, pp. 2726–2735, Jul. 2020, doi: 10.1109/TPWRS.2020.2968108. DOI:

Z. Tian, G. Zhang, N. Zhao, S. Hillmansen, P. Tricoli, and C. Roberts, “Energy Evaluation for DC Railway Systems with Inverting Substations,” in 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nov. 2018, pp. 1–6. doi: 10.1109/ESARS-ITEC.2018.8607710. DOI:

S. Lin et al., “Research on the Regeneration Braking Energy Feedback System of Urban Rail Transit,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7329–7339, Aug. 2019, doi: 10.1109/TVT.2019.2921161. DOI:

G. Zhang, Z. Tian, P. Tricoli, S. Hillmansen, and Z. Liu, “A new hybrid simulation integrating transient-state and steady-state models for the analysis of reversible DC traction power systems,” Int. J. Electr. Power Energy Syst., vol. 109, pp. 9–19, Jul. 2019, doi: 10.1016/j.ijepes.2019.01.033. DOI:

G. Zhang, J. Qian, and X. Zhang, “Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System,” Appl. Sci., vol. 7, no. 3, p. 282, Mar. 2017, doi: 10.3390/app7030282. DOI:

A. Doyle and T. Muneer, “Traction energy and battery performance modelling,” in Electric Vehicles: Prospects and Challenges, Elsevier, 2017, pp. 93–124. doi: 10.1016/B978-0-12-803021-9.00002-1. DOI:

M. Khodaparastan, A. A. Mohamed, and W. Brandauer, “Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 8, pp. 2831–2847, Aug. 2019, doi: 10.1109/TITS.2018.2886809. DOI:




How to Cite

Sumaryoto, D. R. I., & Handoko, Y. A. (2024). Artificial Intelligence in Regenerative Braking for Trains: A Systematic Review. Jurnal Perkeretaapian Indonesia (Indonesian Railway Journal), 8(1), 21–31.




Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.