A Review of Wheel Wear Damage in Railway Vehicle


  • Yusuf Utomo Pribadi Institut Teknologi Bandung
  • Leonardo Gunawan Institut Teknologi Bandung
  • I Wayan Suweca Institut Teknologi Bandung




wear, train, safety


Damage due to wheel wear on railway trains has a significant impact on railway safety and comfort. This review examines various aspects related to wheel wear damage on trains. The primary focus of this review encompasses three critical areas: railway track, wheel-rail interaction, and the trains themselves. The first section discusses the structure and modeling of railway tracks, while the second section explores various types of interactions between wheels and rails as well as related mathematical models. The third section reviews the types of railway vehicles, their mathematical models, and their stability on straight and curved tracks. Furthermore, this review also examines the influence of wheel wear on the dynamic response of the system. It is hoped that this review will provide valuable insights for practitioners and researchers in improving and enhancing the reliability and safety of railway systems.


Download data is not yet available.


C. Shi et al., “Numerical analysis of dynamic behavior of Bi-block precast asphalt trackbed for High-Speed railway,” Constr. Build. Mater., vol. 342, p. 128088, Aug. 2022, doi: 10.1016/j.conbuildmat.2022.128088. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128088

Y. He, J. Lv, and T. Tang, “Communication-Based Train Control with Dynamic Headway Based on Trajectory Prediction,” Actuators, vol. 11, no. 8, pp. 1–14, 2022, doi: 10.3390/act11080237. DOI: https://doi.org/10.3390/act11080237

M. Eroğlu, M. A. Koç, and İ. Esen, “Application of magnetic field to reduce the forced response of steel bridges to high speed train,” Int. J. Mech. Sci., vol. 242, no. December 2022, 2023, doi: 10.1016/j.ijmecsci.2022.108023. DOI: https://doi.org/10.1016/j.ijmecsci.2022.108023

B. Morys, “Enlargement of out-of-round wheel profiles on high speed trains,” J. Sound Vib., vol. 227, no. 5, pp. 965–978, 1999, doi: 10.1006/jsvi.1999.2055. DOI: https://doi.org/10.1006/jsvi.1999.2055

Y. Yang, L. Ling, J. Wang, and W. Zhai, “R ESEARCH ARTICLE A numerical study on tread wear and fatigue damage of railway wheels subjected to anti-slip control,” 2022. DOI: https://doi.org/10.1007/s40544-022-0684-8

R. Fesharakifard, A. Dequidt, T. Tison, and O. Coste, “Dynamics of railway track subjected to distributed and local out-of-round wheels,” Mech. Ind., vol. 14, no. 5, pp. 347–359, 2013, doi: 10.1051/meca/2013074. DOI: https://doi.org/10.1051/meca/2013074

S. Y. Zhang et al., “Experimental study on wheel-rail rolling contact fatigue damage starting from surface defects under various operational conditions,” Tribol. Int., vol. 181, no. January, 2023, doi: 10.1016/j.triboint.2023.108324. DOI: https://doi.org/10.1016/j.triboint.2023.108324

Q. Lan, M. Dhanasekar, and Y. A. Handoko, “Wear damage of out-of-round wheels in rail wagons under braking,” Eng. Fail. Anal., vol. 102, no. January, pp. 170–186, 2019, doi: 10.1016/j.engfailanal.2019.04.019. DOI: https://doi.org/10.1016/j.engfailanal.2019.04.019

Z. Luo, C. Zhao, X. Bian, and Y. Chen, “Discrete element analysis of geogrid-stabilized ballasted tracks under high-speed train moving loads,” Comput. Geotech., vol. 159, no. November 2022, p. 105451, 2023, doi: 10.1016/j.compgeo.2023.105451. DOI: https://doi.org/10.1016/j.compgeo.2023.105451

Q. D. SUN, B. INDRARATNA, and S. NIMBALKAR, “Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast,” Géotechnique, vol. 64, no. 9, pp. 746–751, Jul. 2014, doi: 10.1680/geot.14.T.015. DOI: https://doi.org/10.1680/geot.14.T.015

R. Bastin, “Development of German non-ballasted track forms,” Proc. Inst. Civ. Eng. - Transp., vol. 159, no. 1, pp. 25–39, Feb. 2006, doi: 10.1680/tran.2006.159.1.25. DOI: https://doi.org/10.1680/tran.2006.159.1.25

C. Charoenwong et al., “Railway slab vs ballasted track: a comparison of track geometry degradation,” Constr. Build. Mater., vol. 378, no. December 2022, p. 131121, 2023, doi: 10.1016/j.conbuildmat.2023.131121. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131121

M. Sol-Sánchez and G. D’Angelo, “Review of the design and maintenance technologies used to decelerate the deterioration of ballasted railway tracks,” Constr. Build. Mater., vol. 157, pp. 402–415, Dec. 2017, doi: 10.1016/j.conbuildmat.2017.09.007. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.007

M. Mehvari, M. Esmaeili, and M. Fathali, “Superstructure System Selection for High-Speed Railway Tracks Considering Geotechnical Aspects: A Case Study,” Transp. Infrastruct. Geotechnol., Apr. 2023, doi: 10.1007/s40515-023-00297-z. DOI: https://doi.org/10.1007/s40515-023-00297-z

V. Sarik, “Decision-making model for track system of high-speed rail lines,” p. 98, 2018.

S. Miura, H. Takai, M. Uchida, and Y. Fukada, “The Mechanism of Railway Tracks,” Japan Railw. Transp. Rev., vol. 3, no. March, pp. 38–45, 1998.

S. D. Tayabji and D. Bilow, “Concrete Slab Track State of the Practice,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1742, no. 1, pp. 87–96, Jan. 2001, doi: 10.3141/1742-11. DOI: https://doi.org/10.3141/1742-11

K. ANDO, M. SUNAGA, H. AOKI, and O. HAGA, “Development of Slab Tracks for Hokuriku Shinkansen Line,” Q. Rep. RTRI, vol. 42, no. 1, pp. 35–41, 2001, doi: 10.2219/rtriqr.42.35. DOI: https://doi.org/10.2219/rtriqr.42.35

Z. W. Zhou, J. Alcalá, and V. Yepes, “Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks,” J. Mater. Civ. Eng., vol. 35, no. 6, Jun. 2023, doi: 10.1061/JMCEE7.MTENG-15149. DOI: https://doi.org/10.1061/JMCEE7.MTENG-15149

G.-A. Khalfin and K. Umarov, “The work of intermediate rail fasteners on mountain sections of railways,” 2023, p. 040023. doi: 10.1063/5.0126396. DOI: https://doi.org/10.1063/5.0126396

H. Wang and V. Markine, “Dynamic behaviour of the track in transitions zones considering the differential settlement,” J. Sound Vib., vol. 459, p. 114863, Oct. 2019, doi: 10.1016/j.jsv.2019.114863. DOI: https://doi.org/10.1016/j.jsv.2019.114863

A. L. Pita, P. F. Teixeira, and F. Robuste, “High speed and track deterioration: The role of vertical stiffness of the track,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 218, no. 1, pp. 31–40, Jan. 2004, doi: 10.1243/095440904322804411. DOI: https://doi.org/10.1243/095440904322804411

P. F. Teixeira, A. López Pita, and P. A. Ferreira, “New possibilities to reduce track costs on high-speed lines using a bituminous sub-ballast layer,” Int. J. Pavement Eng., vol. 11, no. 4, pp. 301–307, Aug. 2010, doi: 10.1080/10298431003749733. DOI: https://doi.org/10.1080/10298431003749733

E. Yang, K. C. P. Wang, Q. Luo, and Y. Qiu, “Asphalt Concrete Layer to Support Track Slab of High-Speed Railway,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2505, no. 1, pp. 6–14, Jan. 2015, doi: 10.3141/2505-02. DOI: https://doi.org/10.3141/2505-02

D. Ramirez Cardona, H. Di Benedetto, C. Sauzeat, N. Calon, and J. G. Rose, “Designs, Application and Performances of Asphalt/Bituminous Trackbeds in European, Asian, and African Countries,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2674, no. 11, pp. 245–262, Nov. 2020, doi: 10.1177/0361198120945314. DOI: https://doi.org/10.1177/0361198120945314

H. P. Lee, “Dynamic Response of a Beam With Intermediate Point Constraints Subject to a Moving Load,” J. Sound Vib., vol. 171, no. 3, pp. 361–368, Mar. 1994, doi: 10.1006/jsvi.1994.1126. DOI: https://doi.org/10.1006/jsvi.1994.1126

R. U. A. Uzzal, A. K. W. Ahmed, and S. Rakheja, “Analysis of pitch plane railway vehicle—track interactions due to single and multiple wheel flats,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 223, no. 4, pp. 375–390, Jul. 2009, doi: 10.1243/09544097JRRT250. DOI: https://doi.org/10.1243/09544097JRRT250

T. Szolc, “Simulation of Dynamic Interaction between the Railway Bogie and the Track in the Medium Frequency Range,” Multibody Syst. Dyn., vol. 6, no. 2, pp. 99–122, 2001, doi: 10.1023/A:1017513021811. DOI: https://doi.org/10.1023/A:1017513021811

M. J. M. M. Steenbergen, “Quantification of dynamic wheel–rail contact forces at short rail irregularities and application to measured rail welds,” J. Sound Vib., vol. 312, no. 4–5, pp. 606–629, May 2008, doi: 10.1016/j.jsv.2007.11.004. DOI: https://doi.org/10.1016/j.jsv.2007.11.004

Y. Q. Sun and M. Dhanasekar, “A dynamic model for the vertical interaction of the rail track and wagon system,” Int. J. Solids Struct., vol. 39, no. 5, pp. 1337–1359, Mar. 2002, doi: 10.1016/S0020-7683(01)00224-4. DOI: https://doi.org/10.1016/S0020-7683(01)00224-4

W. Zhai and Z. Cai, “Dynamic interaction between a lumped mass vehicle and a discretely supported continuous rail track,” Comput. Struct., vol. 63, no. 5, pp. 987–997, Jun. 1997, doi: 10.1016/S0045-7949(96)00401-4. DOI: https://doi.org/10.1016/S0045-7949(96)00401-4

W.-M. ZHAI, “TWO SIMPLE FAST INTEGRATION METHODS FOR LARGE-SCALE DYNAMIC PROBLEMS IN ENGINEERING,” Int. J. Numer. Methods Eng., vol. 39, no. 24, pp. 4199–4214, Dec. 1996, doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y. DOI: https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y

E. Guanabara, K. Ltda, E. Guanabara, and K. Ltda, No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. 2020.

J. Pombo et al., “Development of a wear prediction tool for steel railway wheels using three alternative wear functions,” Wear, vol. 271, no. 1–2, pp. 238–245, 2011, doi: 10.1016/j.wear.2010.10.072. DOI: https://doi.org/10.1016/j.wear.2010.10.072

Y. Ye, Y. Sun, D. Shi, B. Peng, and M. Hecht, “A wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: Comparison between simulated and field test results,” Wear, vol. 474–475, no. February, p. 203715, 2021, doi: 10.1016/j.wear.2021.203715. DOI: https://doi.org/10.1016/j.wear.2021.203715

Y. Sun, W. Zhai, and Y. Guo, “A robust non-Hertzian contact method for wheel–rail normal contact analysis,” Veh. Syst. Dyn., vol. 56, no. 12, pp. 1899–1921, Dec. 2018, doi: 10.1080/00423114.2018.1439587. DOI: https://doi.org/10.1080/00423114.2018.1439587

Y. Sun, W. Zhai, Y. Ye, L. Zhu, and Y. Guo, “A simplified model for solving wheel-rail non-Hertzian normal contact problem under the influence of yaw angle,” Int. J. Mech. Sci., vol. 174, no. October 2019, p. 105554, 2020, doi: 10.1016/j.ijmecsci.2020.105554. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105554

Y. Yang et al., “Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions,” Veh. Syst. Dyn., vol. 60, no. 6, pp. 2167–2189, Jun. 2022, doi: 10.1080/00423114.2021.1902541. DOI: https://doi.org/10.1080/00423114.2021.1902541

A. D. DE PATER, “The Geometrical Contact between Track and Wheelset,” Veh. Syst. Dyn., vol. 17, no. 3, pp. 127–140, Jan. 1988, doi: 10.1080/00423118808968898. DOI: https://doi.org/10.1080/00423118808968898

P. Wu, F. Zhang, J. Wang, L. Wei, and W. Huo, “Review of wheel-rail forces measuring technology for railway vehicles,” Adv. Mech. Eng., vol. 15, no. 3, p. 168781322311589, 2023, doi: 10.1177/16878132231158991. DOI: https://doi.org/10.1177/16878132231158991

J. V. R. Silva e Silva, F. A. Antoniolli, C. S. Endlich, A. C. Pires, C. Scandian, and G. F. M. dos Santos, “Influence of wheel tread wear on Rolling Contact Fatigue and on the dynamics of railway vehicles,” Wear, vol. 523, p. 204735, Jun. 2023, doi: 10.1016/j.wear.2023.204735. DOI: https://doi.org/10.1016/j.wear.2023.204735

P.-A. Jönsson, S. Stichel, and I. Persson, “New simulation model for freight wagons with UIC link suspension,” Veh. Syst. Dyn., vol. 46, no. sup1, pp. 695–704, Sep. 2008, doi: 10.1080/00423110802036976. DOI: https://doi.org/10.1080/00423110802036976

Q. Zhu, J. Xie, W. Zhang, G. Chen, and J. Tuo, “Influence of disc brake on wheel polygonal wear of high-speed train,” Wear, vol. 524–525, p. 204814, Jul. 2023, doi: 10.1016/j.wear.2023.204814. DOI: https://doi.org/10.1016/j.wear.2023.204814

X. Jin, L. Wu, J. Fang, S. Zhong, and L. Ling, “An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system,” Veh. Syst. Dyn., vol. 50, no. 12, pp. 1817–1834, Dec. 2012, doi: 10.1080/00423114.2012.695022. DOI: https://doi.org/10.1080/00423114.2012.695022

R. Fröhling, U. Spangenberg, and G. Hettasch, “Wheel/rail contact geometry assessment to limit rolling contact fatigue initiation at high axle loads,” Veh. Syst. Dyn., vol. 50, no. sup1, pp. 319–334, Jan. 2012, doi: 10.1080/00423114.2012.665163. DOI: https://doi.org/10.1080/00423114.2012.665163

S. N. Fergusson, R. D. Fröhling, and H. Klopper, “Minimising wheel wear by optimising the primary suspension stiffness and centre plate friction of self-steering bogies,” Veh. Syst. Dyn., vol. 46, no. sup1, pp. 457–468, Sep. 2008, doi: 10.1080/00423110801993094. DOI: https://doi.org/10.1080/00423110801993094

I. L. Vér, C. S. Ventres, and M. M. Myles, “Wheel/rail noise—Part III: Impact noise generation by wheel and rail discontinuities,” J. Sound Vib., vol. 46, no. 3, pp. 395–417, Jun. 1976, doi: 10.1016/0022-460X(76)90863-4. DOI: https://doi.org/10.1016/0022-460X(76)90863-4

G. M. Scheepmaker, R. M. P. Goverde, and L. G. Kroon, “Review of energy-efficient train control and timetabling,” Eur. J. Oper. Res., vol. 257, no. 2, pp. 355–376, 2017, doi: 10.1016/j.ejor.2016.09.044. DOI: https://doi.org/10.1016/j.ejor.2016.09.044

P. H. A. Corrêa, P. G. Ramos, R. Fernandes, P. R. G. Kurka, and A. A. dos Santos, “Effect of primary suspension and friction wedge maintenance parameters on safety and wear of heavy-haul rail vehicles,” Wear, vol. 524–525, no. January, p. 204748, 2023, doi: 10.1016/j.wear.2023.204748. DOI: https://doi.org/10.1016/j.wear.2023.204748

J. Bian, Y. Gu, and M. H. Murray, “A dynamic wheel–rail impact analysis of railway track under wheel flat by finite element analysis,” Veh. Syst. Dyn., vol. 51, no. 6, pp. 784–797, Jun. 2013, doi: 10.1080/00423114.2013.774031. DOI: https://doi.org/10.1080/00423114.2013.774031




How to Cite

Pribadi, Y. U., Gunawan, L., & Suweca, I. W. (2024). A Review of Wheel Wear Damage in Railway Vehicle. Jurnal Perkeretaapian Indonesia (Indonesian Railway Journal), 8(1), 42–52. https://doi.org/10.37367/jpi.v8i1.348




Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.